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1 Introduction

The simulation of human movement has become central
to several areas of research and industry including anima-
tion, film, environment design, and emergency preparedness.
These areas rely on methods that may be derived from several
different principles or approaches. Each of these approaches
embodies some assumptions about how humans are repre-
sented and how they move as a formalized model. Gener-
ally speaking, the movement models are comprised of sev-
eral interacting sub-models that handle different conceptual
layers of the navigation problem from behaviour to steer-
ing. Of particular interest are agent-based models where in-
dividual entities handle their decentralized actions and in-
teractions. Macroscopic behaviours may then emerge from
the microscopic agent-based model. The history of these
models is rich and varied, starting with the need to an-
imate numerous interacting characters in computer graph-
ics [Reynolds, 1987]. Since then a plethora of models have
emerged [Pelechano et al., 2008; Thalmann and Musse, 2013;
Huerre et al., 1.

Of particular importance in the human simulation
paradigm, crowd simulation, or synthetic crowds, is the low-
est level model, i.e. steering and collision avoidance. These
models handle the moment-to-moment movement decisions
which resolve agent-agent and agent-environment collisions
and goal-reaching behaviours. At this level, the agent often
has a computationally efficient and largely simplified point-
mass, or particle, representation. This improves the efficiency
of collision detection and avoidance decisions while reducing
the overhead required to store agent configurations, shapes,
or plans. These affordances and efficiencies have made the
single-particle agent-based model ubiquitous in research and
industrial applications of synthetic crowds.

However recent work has shown that there are two key
limitations in this approach. The first is that the underlying
representation is not performant in terms of the representa-
tion of diverse humans and mobilities. Second, the produc-
tion of these models often relies directly on encoded rules,
expert decisions and beliefs, or fixed/limited datasets[Ha-
worth, 2019]. This work focuses on exemplifying these issues
through simulation-based analysis. The work first presents a
large scale comparative quantitative and qualitative analysis
of normalized rule-based single-particle steering models in
contrast with spacetime planning multi-particle biomechani-

cal steering model. This analysis highlights the contrast be-
tween model foundations and representations, showing that
while all models have edge cases where performance is poor
or collapse completely into fail cases, that biomechanically
founded models afford a higher-fidelity and more human-like
outcomes. Additionally, this work shows that representa-
tion and diversity in the steering model at the single agent
level lead to significantly different outcomes at the crowd
level (e.g. diversity impacts outcomes in safety-critical sce-
nario simulation). Specifically, the work shows that the prior
method of using desired agent velocity as a proxy for crowd
heterogeneity (e.g. older agents are slower) is too limited in
its ability to accurately represent human diversity in synthetic
crowds. These results highlight the need for higher fidelity
representations and for learning-based approaches for move-
ment policies in steering models intended to represent hu-
mans. Here we present potential new solutions in the form
of a groundbreaking synthesis of research areas in machine
learning and physical character animation.

2 Learning to Move

Past methods for synthetics crowds can broadly be placed
into two groups: data-driven and rule-based. Data-driven
methods are limited because they tend to localize to the data.
Rule-based methods are limited because they tend to meet
the rules and can not account for all situations. Both ap-
proaches are highly dependent on their underlying represen-
tation. Specifically, single-particle representations of humans
oversimplify the actions space and collision corridor of indi-
vidual agent’s which has a notable impact on crowd level out-
comes. Advances in reinforcement learning (RL) and specif-
ically DeepRL (DRL) and Multi-agent RL (MARL) have the
potential to help us learn policies from simulations without
defining a concrete and limiting model or dataset. These ad-
vances also allow us to work with much more complicated
representations, such as footsteps or full-body articulated
agents, by learning interacting policies for locomotion. This
is inspired by the human sensorimotor locomotion loop where
supraspinal input produces behavioural locomotion decisions
and interacts with the complex system of central-pattern gen-
erators, motor/sensory neurons, and functional morphology
to produce locomotor movements [Tucker ef al., 2015]. To
address these issues, we present two approaches both pred-
icated on Deep Reinforcement Learning, (1) parametric pol-



icy learning for an agent-based single-particle steering model;
and (2) hierarchical reinforcement learning for physical full-
body humanoid crowds.

In this work, we first sought to apply this approach to recre-
ating the prior art in the field, that is, to learn movement poli-
cies on top of the representations and heterogeneity of classic
crowd simulators—the single-particle agent-based model with
heterogeneous desired velocities and agent radii as a proxy
for diverse human agents. By learning a single shared pol-
icy in a decentralized agent-based approach we can produce
policies for agent movement which are akin to past crowd
steering simulators. We found that useful steering policies
can be learnt by using domain randomization and large scale
simulation, i.e. giving agents random goals in randomized
environments where their long term path is known. To learn
diverse movements, however, presents a more complicated
problem. Agents must 1) observe quantities from the environ-
ment which are not directly known to them; 2) be parametric,
i.e. have a parameter that can be set by the practitioner after
training has been completed and 3) learn policies that respond
to other heterogeneous agents. Problems 1 & 3 are fundamen-
tally related in reinforcement learning and be formalized un-
der the concept of partial observability in the Markov decision
process. For example, a person is not given the exact speed
of a nearby person, instead, we infer this through sequential
vision. We show that sequential observation stacking of the
agent’s vision (last IV snapshots of the visual field, in this
case, depth rays) allows agents to learn velocity and accel-
eration based policies without directly observing those quan-
tities. We show that problem 2 can be solved by making the
parameter ubiquitous in the reinforcement learning paradigm,
i.e. observed in the state input (goal-conditioning or simply
within observations); encouraged by the reward function dur-
ing training; and utilized or consequential in the action space.
By randomizing the parameter over the valid parameter range
during training it becomes part of the domain randomization
strategy. In this way, the agent learns a parametric policy or
policy subspaces. That is, in a combinatorial manner, agents
of a particular parameter setting learn to steer with agents of
other parameter settings. To exemplify this method, we show
that it works exceptionally well over the desired speed and
agent radius parameters. Additionally, in many settings, the
learned policy outperforms prior work by learning sequential
policies that mimic higher-level longer-term planning, such
as avoiding an area that is too densely occupied.

Our second approach seeks to bring together two disparate
fields in robotics and animation to produce extremely high
fidelity crowd steering simulators. Specifically, we marry
crowd simulation and physical character control by propos-
ing a hierarchical multi-agent reinforcement learning tech-
nique for agent-based physically interactive full-body hu-
manoid crowds. The problem is structured as hierarchical
by separating low-level control of the functional morphol-
ogy, proprioception, and cyclic pattern generation from high-
level control of environment observation, short- & long-term
planning, and intelligence. Using similar domain random-
ization strategies as mentioned above we train the hierar-
chy in a bottom-up fashion. First, we learn a goal condi-
tioned stable locomotion lower-level controller policy that

produces torques for joint level PD controllers in the char-
acter. This lower-level policy is conditioned on a two-step
foot placement plan which the higher-level policy is meant
to produce. During training, this two-step plan is sampled
across a broad spectrum of difficulties and the character un-
dergoes external randomized forces that mimic those that hu-
mans may encounter during dense or adverse crowd scenar-
ios. The resultant low-level policy is shared among agents in
a fashion similar to a common movement language—this ide-
ally reduces the impact of the non-stationarity problem en-
countered in MARL. The high-level policy takes in environ-
ment observations including an egocentric relative velocity
field. We train the high-level policy using domain random-
ization as above. We show that using only simple naviga-
tion goal-reaching rewards the high-level policy learns com-
plex navigation strategies. We also show that the high-level
policy can be heterogeneous and rewards may be substituted
or combined to produce arbitrary behaviours such as navi-
gation, tag games, soccer games, etc[Haworth et al., 2020;
Berseth er al., 2019].
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