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Abstract
Motivated by the need to understand the central
complexity in problems like multi-agent path find-
ing and generalizing models in new scenarios, we
present an algorithm that measures task-level inter-
agent interaction difficulties in decentralized crowd
scenarios. The algorithm (i) views a crowd sim-
ulation as a transformation of the parameter of a
steering model, (ii) captures the reduced amount of
abstracted trajectory classes. We exploit the mea-
surement to approximate the scenario generaliza-
tions of learning models. Experiments validate the
efficacy of the measurement in characterizing inter-
action difficulty, and the potential to select domains
before actually training and testing a model.

1 Motivation
In the context of decentralized crowd simulation [Qiao et al.,
2018], a scenario refers to the configuration of obstacles in
an environment and the tasks of all agents in that environ-
ment. The task of an agent refers to the initial and destina-
tion positions of the agent, the starting time when the agent
presents into the environment, the maximal number of simu-
lation steps allowed, and the radius of the agent. The inter-
action among agents refers to the effort made by the agents
to (i) follow their individual planned paths (nodes) and (ii)
avoid collisions from each other. Given a decentralized sce-
nario, some tasks will inevitably “encounter” more agents,
hence potential inter-agent collisions, than other tasks despite
the steering model been chosen. Such inherent task-level
inter-agent interaction difficulty introduces the central com-
plexity for problems including Multi-Agent Pathfinding, and
scenario generalization (SG) of learning models [Qiao et al.,
2019]. To this end, an algorithm is presented. It takes the
full information about a scenario as input and outputs a scalar
for each agent (task) in the scenario, indicating the task-level
interaction difficulty for that agent with all other agents, de-
spite the steering model being chosen. We further use the
measurement to approximate scenario generalization.

2 Approach to Measurement
An overview of the proposed method is illustrated in Figure 1.

2.1 Crowd Simulation
Given a scenario with obstacle configuration E , suppose there
are n agents in the scenario. Denote all agents as X1∼n :=

(X1, X2, ..., Xn)1. We aim to estimate the task-level interac-
tion between an agent Xi and all other agents in the scenario,
which are denoted as X−i := (X1, ..., Xi−1, Xi+1, ..., Xn)
2, for i = 1, 2, ..., n.

Since our goal is to estimate task-level rather than model-
level (how a particular model performs) interaction between
agent Xi and agents X−i, it is essential to avoid specifying a
steering model with a fixed parameter for each agent. Instead,
we model the uncertainty of the behavior of agent Xi by as-
suming the parameter of the model being a random variable,
denoted as Θi, that obeys some distribution pi(θi), i = 1, 2, ...,
n. For notation simplicity, denote Θ1∼n := (Θ1,Θ2, ...,Θn).

For a given scenario, at task-level crowd simulation, the in-
put of the crowd system is Θ1∼n and the output is a tuple of
interactive trajectories, denoted as T1∼n := (T1, T2, ..., Tn),
where Ti is the trajectory of agent Xi driven by Θ1∼n. The
relationship between the input and the output can be repre-
sented as f(Θ1∼n|E , X1∼n,M) = T1∼n, conditioned on the
obstacle configuration E , the tasks of all agents X1∼n from
the given scenario, and the steering model family M. The
transformation function f(·) provides an alternative view of
the input and output of a crowd simulation.

2.2 Trajectory Abstraction
To improve the representational efficiency for characterizing
the relationships among trajectories of different agents, it is
necessary to abstract the trajectory Ti of agent Xi to a finite
number of classes. Each class contains realizations of Ti of
the same modality, while realizations from different classes
present different modalities, i=1, 2, ..., n.

To achieve the trajectory abstraction, besides running the
simulation involving all agents at the random parameter
Θ1∼n, we additionally run one simulation for agent Xi from
its initial to its destination position, with obstacle configura-
tions but no other agents, at an appropriately selected steering
parameter θ∗i , for i = 1, 2, ..., n. This results in a determin-
istic solo trajectory for agent Xi, denoted as si, which could
be viewed as agent Xi’s ideal trajectory in the sense that no
extra effort is needed to avoid inter-agent collisions.

Therefore a generic function can be applied to compute the
difference between the trajectory Ti of agent Xi and its solo
trajectory si, which is a quantification of the effort that agent
Xi makes for interaction with the rest agents X−i. As a typi-
cal choice, Dynamic Time Warping (DTW) that accumulates

1At task level, Xi refers to both the i-th agent and the task of the
i-th agent, and we use the two meanings of Xi interchangeably.

2This does not mean that during the crowd movement, there are
no interactions among agents X1, ..., Xi−1, Xi+1, ..., Xn.
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Figure 1: Diagram for measuring task-level inter-agent interaction (in this example, between the blue agent and other agents). It consists of a crowd simulation block, a trajectory
abstraction block and a Mutual Information (MI) block. The crowd simulation block takes in a random parameter and generates random interactive trajectories of all agents. The
trajectory abstraction block compares the trajectory of an agent (e.g., the blue agent) and its solo trajectory to yield DTW difference, which goes through a clustering process and
outputs an abstracted trajectory index. The MI block measures the reduced amount of the abstracted trajectory classes of the agent resulting from the interaction with other agents.
An option of an agent is shown with a curve, representing a class of similar trajectories for the agent. The destination of an agent is shown with a triangle of the same color. Black
rectangles in the maps are obstacles.

distances over all pairs of aligned states [Salvador and Chan,
2007], yields the DTW difference: Di = DTW (Ti||si),
which embodies the extra expenditure of agent Xi in the tra-
jectory Ti due to the interaction with the rest agents X−i.
Di is further transformed to an abstracted trajectory in-

dex Ki ∈ {1, 2, . . . , ci} by a clustering process, denoted by
Ki = g(Di). We choose a simple method that defines the
clusters as the proper percentiles on the cumulative distri-
bution function (CDF) of Di. The uniform partitions along
the probability dimension of the CDF of Di create the cor-
responding non-uniform partitions (bins) along the DTW di-
mension, and the index of the partition (bin) that Di falls into
on the DTW dimension is the Ki. Thus, Ki is an abstrac-
tion of the possible trajectory Ti of agent Xi. For instance, in
the trajectory abstraction block of Figure 1, Ki abstracts Ti
of the blue agent into four classes (an abstracted class of an
agent represents a set of similar trajectories for the agent, in
the sense of their DTW differences), and indexes them with
the support {1, 2, 3, 4}.

The trajectory abstraction block outputs the abstracted in-
dex tuple K1∼n := (K1,K2, ...,Kn) at Θ1∼n

3. The ratio-
nale is that in a scenario, we represent the possible abstracted
class of a task Xi with an index Ki, and a simulation as a
co-occurrence of these abstracted indexes K1∼n.

2.3 Computing interaction
To exploit the co-occurrence of the abstracted indexes among
agents in estimating the inter-agent interaction, we use the
mutual information (MI):

I(Ki;K−i) = H(Ki)−H(Ki|K−i)

= E
(Ki,K−i)

[
log

P (Ki,K−i)

P (Ki)P (K−i)

]
(1)

In Equ.(1), H(Ki) measures the uncertainty in predict-
ing agent Xi’s abstracted trajectory class, while H(Ki|K−i)
measures the uncertainty in predicting agent Xi’s abstracted
trajectory class influenced by the classes of all the rest agents.
Thus MI characterizes the influence of knowing agentsX−i’s
abstracted trajectory index tuple in predicting agent Xi’s ab-
stracted trajectory class. This intuition is further pictured in

3Note that K1=1 and K2=1 are two different events. The ab-
stracted index enumerates the event set of each individual agent.

the MI block of Figure 1, where the figure above illustrates
the possible trajectory classes (indexes) for agentXi (the blue
agent) when the other agents’ possible trajectory classes are
unknown, while the figure below shows how agent Xi’s pos-
sible trajectory classes are restricted by other agents’ trajec-
tory classes. The reduced amount of the abstracted trajectory
classes of agent Xi reflects the interaction between agent Xi

and agents X−i, in the given scenario.

3 Experiment Design for Evaluation
We design two sets of experiments to systematically verify
the efficacy and utility of the algorithm. The first set of
experiments verifies the efficacy of the measurement in
characterizing the interaction difficulty of a scenario. This
set of experiments consists of two parts. Part-I compares
the measurement and a baseline on designated scenarios
to demonstrate that the measurement presents advantages
over the baseline on anticipated aspects. Part-II compares
the measurement and the baseline in three data domains,
both qualitatively and quantitatively. The second set of
experiments aims to verify the utility of the measurement
to approximate scenario generalization, and conducts a
comparison with the baseline.

In the future submission, we will describe how to exploit the
proposed measurement to estimate scenario generalization.
We will also provide full experimental results on Egocentric
Representative (G) domain, by qualitatively comparing the
measurement with the baseline [Berseth et al., 2013].

4 Summary
We propose an algorithm to measure task-level inter-agent in-
teraction in decentralized crowd scenarios, and exploit the
measurement to estimate the scenario generalization of a
learning model in crowd simulation. Experiment results vali-
date the efficacy in characterizing interaction difficulty. In ad-
dition, the consistency with the ranking of true scenario gen-
eralizations on multiple candidate domains implies the po-
tential of the measurement in helping to select suitable train-
ing and testing domains, before actually training and testing
a model.
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