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Abstract
In this study, we propose to apply deep learning
to pedestrian crowd represented as clusters, learn
to predict their dynamics by a neural network,
and examine the learned contents in terms of the
cognitive-level analogy. By regarding the trained
model as a model at a certain cognitive level, the
model can be applied to distinguish phenomenons
that learned in the current cognitive level to the oth-
ers requiring further details of surroundings. To
demonstrate this methodology, we introduce a neu-
ral network and training data recorded at public lo-
cations and examine the trained model. We aim to
contribute to developing safe and secure traffic sys-
tems as an application of the proposed approach.

1 Introduction
As in deep learning and optimization techniques, it is often
useful to look at biological analogies in developing new tech-
nologies. The concepts built on such biological analogies can
be a basis for the technologies that follow. In this study, we
propose a new approach to model pedestrian crowd dynamics
based on our observations of cognitive modes.

The modeling of pedestrian behavior has long been a sub-
ject of study. In particular, the recent advancements by
data-driven approaches [Alahi et al., 2016] [Gupta et al.,
2018][Vemula et al., 2018] are more suitable for the objec-
tives of predicting independent pedestrian trajectories than
conventional dynamic modeling approaches [Helbing and
Molnar, 1995]. Typically in data-driven approaches, features
of pedestrians are fed to recurrent units, and interactions are
taken into account by interconnections, such as pooling lay-
ers. In this configuration, features for pedestrians need to be
measured accurately.

In our daily cognition, there are two modes: the first mode
corresponds to a clear perception of surroundings and con-
scious decision, and the second mode corresponds to a less
conscious perception of pedestrians as clusters and quick de-
sitions. Humans efficiently behave while switching between
these cognitive modes depending on the situation. We in-
fer the existence of such cognitive modes suggests that there
should be a set of cognitive models selectable depending on
the objectives of applications.

Figure 1: Training Data Preparation

Based on this observation, we propose an approach to re-
gard pedestrians as clusters as a complement to the existing
data-driven approaches, which require detailed features of in-
dependent pedestrians. By regarding a cluster of people as
a subject of study, it enables us to model a system based on
features of clusters instead of features of agents, whose max-
imum numbers are inherently limited by the neural network
size. In the cluster-based approach, we expect interactions
within a cluster are learned through training once we set up
the data and learning appropriately.

2 Training data and Augumentation
For training a network, minutes of movies were recorded by a
monocular camera in public locations, including a pedestrian
exclusive road and exhibition booth. We extracted frames
from these movies, and applied the object detection to detect
pedestrians on frames [Redmon and Farhadi, 2018]. Approx-
imate positions of pedestrians are defined using the bounding
boxes. We converted them into points on a 2-d rectangle via
a frame conversion using four corner markers on the ground
(Figure 1).

Based on computed pedestrian positions on a rectangle, we
generated input images for training and validation using a
Gaussian potential function [Saiin et al., 2018]. We set the
center of the Gaussian potential to a pedestrian position and
the standard deviation to 0.5 [m], which is in accordance with
a typical personal distance defined in proxemics.

By adding up Gaussian functions, it results in a 2-d Gaus-
sian mixture distribution, which can be rendered as blobs on
black canvas, as shown in Figure 1.

These images are randomly cropped as 128×128-pixel im-



ages. The actual area size corresponding to this pixel size
depends on the original image size.

3 The neural network architecture
To demonstrate learning the temporal changes of clusters, we
consider a network shown in Figure 2. The network has en-
coder converting input images to high-level feature represen-
tations. For sequential images, we applied the same encoder
multiple times to prepare a time series of high-level features,
which is similar to the Siamese network [Taigman et al.,
2014]. Then, these features are fed as inputs to the LSTM
layer to predict the next features. The predicted features are
converted into an image by the decoder network.

Figure 2: Encoder-LSTM-Decoder architecture

By reflecting the probabilistic aspect of pedestrians, the en-
coder and decoder are pre-trained as β-VAE to learn a static
pedestrian distribution in the training data [Higgins et al.,
2017] [Burgess et al., 2018]. After the pre-training, we con-
structed the encoder-LSTM-decoder architecture by transfer-
ring the encoder and decoder with pre-trained weights, as in
Figure 2.

4 Prediction
By feeding two sequential frames to the trained network, it
can predict the next frame. As networks trained by assuming
a specific sampling rate, prediction always keeps the same
sampling rate unless the network is re-trained with the other
value.

Similar to a text sequence generation using a recurrent neu-
ral network, a sequence can be generated by iteratively feed-
ing the predicted image, as shown in Figure 3. The network
first receives two sequential frames as seeds and predicts the
next frame, and this prediction becomes one of the inputs to
the next prediction. We repeated these steps over a sequence,
as shown from left to right in Figure 3.

Figure 3: Sequence Generation

5 Discussions
5.1 Cognitive level and Prediction
As demonstrated in Section 4, the moves of pedestrian clus-
ters are learned and successfully predicted using abstracted
features. Since the network learned mean phenomena in sam-
ples at every 3 FPS, it is not capable of predicting specific
actions noticeable to human eyes, such as a person walking
against a mean traffic flow and quickly moving to avoid con-
tact. We assume such a quick move represents awareness
to detailed features of other pedestrians, i.e., high cognitive
mode, which is now distinguished as an error to the predic-
tion by our model.

For lifting the cognitive level, it would be useful to intro-
duce more features and annotate them in the training data,
such as pedestrians face directions, gaze, pose, etc., and atten-
tion mechanism [Vemula et al., 2018] to set focus on features.
Towards this direction, the latest results are available in the
existing data-driven approaches [Alahi et al., 2016] [Gupta et
al., 2018].

For the temporal aspect, since we used only two frames
to predict the next frame, the model can only make a short-
term prediction. For predicting a long-term correlation, we
can increase the number of input frames, and expect LSTM
layers to capture the long-term correlation of high-level fea-
tures. We also infer pedestrian actions inherently have multi-
ple time-scale nature and switching mechanisms, depending
on a circumstance.

5.2 Pedestrian dynamics and Environment
We applied the current framework to movies recorded at two
different locations. The first set of movies recorded at a pub-
lic concourse has a trend of vertical pedestrian flow. This
trend is learned well and reflected in the prediction. On the
other hand, the movies recorded at an exhibition booth show
a pattern of pedestrians to stop and stay at some locations.
This trend contributed negatively to training, and prediction
performance was slightly lower than the former.

5.3 Learning using Abstracted Features
Learning on abstract features using the encoder-LSTM-
decoder structure brings some advantages against pixel-to-
pixel image prediction [Shi et al., 2015] [Mahjourian et al.,
2017] [Sakurai et al., 2019]. Firstly, the model training be-
comes less computationally intensive because of the smaller
dimensionality. Secondly, the network trained on high-level
features is robust to small noises in inputs [Villegas et al.,
2017]. Thirdly, pre-trained weights can facilitate the train-
ing of derived task, which is the case in our two-step training
explained in Section 3

6 Conclusion
We proposed a deep learning application to study pedestrian
crowds as clusters based on an analogy of cognitive modes.
We hope to contribute to design safe and secure traffic sys-
tems as an application of the cognitive modeling.
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